

neurotic

Curate, visualize, annotate, and share your behavioral ephys data using Python

[image: PyPI project] [https://pypi.org/project/neurotic] [image: Anaconda Cloud project] [https://anaconda.org/conda-forge/neurotic] [image: GitHub source code] [https://github.com/jpgill86/neurotic] [image: conda-forge feedstock] [https://github.com/conda-forge/neurotic-feedstock] [image: Documentation status] [https://readthedocs.org/projects/neurotic] [image: Travis build status] [https://travis-ci.com/jpgill86/neurotic] [image: conda-forge build status] [https://dev.azure.com/conda-forge/feedstock-builds/_build/latest?definitionId=8417&branchName=master] [image: Coverage status] [https://coveralls.io/github/jpgill86/neurotic?branch=master] [image: Zenodo archive] [https://doi.org/10.5281/zenodo.3564990]

Version: 1.3.0 (other versions [https://readthedocs.org/projects/neurotic/versions/])

neurotic is an app for Windows, macOS, and Linux that allows you to easily
review and annotate your electrophysiology data and simultaneously captured
video. It is an easy way to load your Neo [https://github.com/NeuralEnsemble/python-neo]-compatible data (see neo.io [https://neo.readthedocs.io/en/latest/io.html#module-neo.io]
for file formats) into ephyviewer [https://github.com/NeuralEnsemble/ephyviewer] without doing any programming. Share a
single metadata file with your colleagues and they too will quickly be looking
at the same datasets!

[image: Screenshot]

Overview

To use neurotic, first organize your datasets in a metadata file like
this (see Configuring Metadata):

my favorite dataset:
 description: This time it actually worked!

 data_dir: C:\local_dir_containing_files
 remote_data_dir: http://myserver/remote_dir_containing_downloadable_files # optional
 data_file: data.axgx
 video_file: video.mp4
 # etc

 video_offset: -3.4 # seconds between start of video and data acq
 epoch_encoder_possible_labels:
 - label01
 - label02
 plots:
 - channel: I2
 ylim: [-30, 30]
 - channel: RN
 ylim: [-60, 60]
 # etc

 filters: # used only if fast loading is off (lazy=False)
 - channel: Force
 lowpass: 50
 # etc
 amplitude_discriminators: # used only if fast loading is off (lazy=False)
 - name: B3 neuron
 channel: BN2
 units: uV
 amplitude: [50, 100]
 # etc

another dataset:
 # etc

Open your metadata file in neurotic and choose a dataset. If the data and
video files aren’t already on your local computer, the app can download them
for you, even from a password-protected server. Finally, click launch and the
app will use a standard viewer layout to display your data to you using
ephyviewer [https://github.com/NeuralEnsemble/ephyviewer].

[image: Screenshot]

(Pictured above is a voracious Aplysia californica in the act of making the
researcher very happy.)

The viewers are easy and intuitive to navigate (see User Interface [https://ephyviewer.readthedocs.io/en/latest/interface.html]):

	Pressing the play button will scroll through your data and video in real
time, or at a higher or lower rate if the speed parameter is changed.

	The arrow/WASD keys allow you to step through time in variable increments.

	Jump to a time by clicking on an event in the event list or a table entry in
the epoch encoder.

	To show more or less time at once, right-click and drag right or left to
contract or expand time.

	Scroll the mouse wheel in the trace viewer or video viewer to zoom.

	The epoch encoder can be used to block out periods of time during which
something interesting is happening for later review or further analysis
(saved to a CSV file).

	All panels can be hidden, undocked, stacked, or repositioned on the fly.

Electrophysiologists will find this tool useful even if they don’t need the
video synchronization feature!

Portability is easy with neurotic! Use relative paths in your metadata file
along with a remotely accessible data store such as GIN [https://gin.g-node.org] to make your metadata
file fully portable. The same metadata file can be copied to a different
computer, and downloaded files will automatically be saved to the right place.
Data stores can be password protected and neurotic will prompt you for a
user name and password. This makes it easy to share the neurotic experience
with your colleagues! 🤪

Installation

neurotic requires Python 3.6 or later.

Note that the latest release of one of neurotic’s dependencies, pyqtgraph
0.10.0, is incompatible with Python 3.8 or later on Windows unless that
dependency is installed via conda-forge (recommended method) (details [https://github.com/jpgill86/neurotic/issues/129]).

Recommended Method

conda [https://docs.conda.io/projects/conda/en/latest/user-guide/install/] users can install neurotic and all of its dependencies with one
command:

conda install -c conda-forge neurotic

On Windows, this will also create a Start Menu shortcut for launching the app.

Alternate Method using pip

Installation of neurotic via pip will install nearly all of its
dependencies automatically, with one exception. neurotic requires PyAV [https://docs.mikeboers.com/pyav/develop/overview/installation.html],
which is not easily installed with pip on some systems, especially Windows.
The easiest way to install PyAV is using conda [https://docs.conda.io/projects/conda/en/latest/user-guide/install/]:

conda install -c conda-forge av

Install the latest release version of neurotic from PyPI [https://pypi.org/project/neurotic] using

pip install -U neurotic

or install the latest development version from GitHub [https://github.com/jpgill86/neurotic] using

pip install -U git+https://github.com/jpgill86/neurotic.git

Note that if you install the development version, you may also need the latest
development version of ephyviewer [https://github.com/NeuralEnsemble/ephyviewer], which you can get using

pip install -U git+https://github.com/NeuralEnsemble/ephyviewer.git

Getting Started

If you installed neurotic into a conda environment, first activate it:

conda activate <environment name>

Launch the app from the command line:

neurotic

A simple example is provided. Select the “example dataset”, download the
associated data (~7 MB), and then click “Launch”. See User Interface [https://ephyviewer.readthedocs.io/en/latest/interface.html] for
help with navigation.

Disabling “Fast loading” before launch will enable additional features
including amplitude-threshold spike detection and signal filtering.

To inspect the metadata file associated with the example or to make changes to
it, click “Edit metadata”. See Configuring Metadata for details about the
format.

If you prefer Jupyter notebooks, you can launch an example notebook instead for
experimenting with neurotic’s API:

neurotic --launch-example-notebook

The command line interface accepts other arguments too:

usage: neurotic [-h] [-V] [--no-lazy] [--thick-traces] [--show-datetime]
 [--theme {light,dark,original,printer-friendly}]
 [--launch-example-notebook]
 [file] [dataset]

neurotic lets you curate, visualize, annotate, and share your behavioral ephys
data.

positional arguments:
 file the path to a metadata YAML file (default: an example
 file)
 dataset the name of a dataset in the metadata file to select
 initially (default: the first entry in the metadata
 file)

optional arguments:
 -h, --help show this help message and exit
 -V, --version show program's version number and exit
 --no-lazy do not use fast loading (default: use fast loading)
 --thick-traces enable support for traces with thick lines, which has
 a performance cost (default: disable thick line
 support)
 --show-datetime display the real-world date and time, which may be
 inaccurate depending on file type and acquisition
 software (default: do not display)
 --theme {light,dark,original,printer-friendly}
 a color theme for the GUI (default: light)
 --launch-example-notebook
 launch Jupyter with an example notebook instead of
 starting the standalone app (other args will be
 ignored)

Configuring Metadata

To load your data with neurotic, you must organize them in one or more YAML
files, called metadata files.

YAML files are very sensitive to punctuation and indentation, so mind those
details carefully! Importantly, the tab character cannot be used for
indentation; use spaces instead. There are many free websites [https://www.google.com/search?q=yaml+validator] that can validate YAML for
you.

You may include comments in your metadata file, which should begin with #.

Top-Level Organization

Datasets listed within the same metadata file must be given unique names, which
may include spaces. The special name neurotic_config is reserved for
neurotic configuration settings and cannot be used for datasets.

In addition to names, a long description can be provided for each dataset.

Details pertaining to each dataset, including the description, are nested
beneath the dataset name using indentation. You may need to use double quotes
around names, descriptions, or other text if they contain special characters
(such as : or #) or are composed only of numbers (such as a date).

experiment 2020-01-01:
 description: Both the name and description will be visible when neurotic loads the metadata
 # other details about this dataset will go here

my favorite dataset:
 description: This time it actually worked!
 # other details about this dataset will go here

Specifying Data Locations

Within a dataset’s YAML block, paths to data and video files should be
provided.

All files associated with a dataset should be collected into a single
directory. A path to the local copy of this directory can be provided using the
data_dir key. You may specify data_dir as an absolute path (e.g.,
C:\Users\me\folder) or as a path relative to the metadata file (e.g.,
folder). If left unspecified, the directory containing the metadata file is
used.

Paths to individual files within the dataset are provided using keys listed
below. These paths should be given relative to data_dir. If data_dir is
flat (no subdirectories), these should be simply the file names. Only
data_file is required.

	Key

	Description

	data_file

	A single Neo [https://github.com/NeuralEnsemble/python-neo]-compatible data file (see neo.io [https://neo.readthedocs.io/en/latest/io.html#module-neo.io]
for file formats)

	video_file

	A video file that can be synchronized with data_file

	annotations_file

	A CSV file for read-only annotations

	epoch_encoder_file

	A CSV file for annotations writable by the epoch encoder

	tridesclous_file

	A CSV file output by tridesclous [https://github.com/tridesclous/tridesclous]’s DataIO.export_spikes [https://tridesclous.readthedocs.io/en/latest/api.html#tridesclous.dataio.DataIO.export_spikes]

Note that the annotations_file must contain exactly 4 columns with
these headers: “Start (s)”, “End (s)”, “Type”, and “Label”.

The epoch_encoder_file must contain exactly 3 columns with these headers:
“Start (s)”, “End (s)”, and “Type”. (The fourth column is missing because
ephyviewer’s epoch encoder is currently unable to attach notes to individual
epochs; this may be improved upon in the future.)

The tridesclous_file is described in more detail in
tridesclous Spike Sorting Results.

Remote Data Available for Download

Data files must be stored on the local computer for neurotic to load them
and display their contents. If the files are available for download from a
remote server, neurotic can be configured to download them for you to the
local directory specified by data_dir if the files aren’t there already.

Specify the URL to the directory containing the data on the remote server using
remote_data_dir. neurotic expects the local data_dir and the
remote_data_dir to have the same structure and will mirror the
remote_data_dir in the local data_dir when you download data (not a
complete mirror, just the specified files).

For an example, consider the following:

my favorite dataset:
 data_dir: C:\Users\me\folder
 remote_data_dir: http://myserver/remote_folder
 data_file: data.axgx
 video_file: video.mp4

With a metadata file like this, the file paths data_file and video_file
are appended to remote_data_dir to obtain the complete URLs for downloading
these files, and they will be saved to the local data_dir.

If you have many datasets hosted by the same server, you can specify the server
URL just once using the special remote_data_root key, which should be
nested under the reserved name neurotic_config outside of any dataset’s
YAML block. This allows you to provide for each dataset a partial URL to a
folder in remote_data_dir which is relative to remote_data_root. For
example:

neurotic_config: # reserved name for global settings
 remote_data_root: http://myserver

my favorite dataset:
 data_dir: C:\Users\me\folder1
 remote_data_dir: remote_folder1
 data_file: data.axgx
 video_file: video.mp4

another dataset:
 data_dir: C:\Users\me\folder2
 remote_data_dir: remote_folder2
 data_file: data.axgx
 video_file: video.mp4

Here, URLs to video files are composed by joining remote_data_root +
remote_data_dir + video_file.

Recall that if data_dir is a relative path, it is assumed to be relative
to the metadata file. In the example above, if the metadata file is located in
C:\Users\me, the paths could be abbreviated:

neurotic_config:
 remote_data_root: http://myserver

my favorite dataset:
 data_dir: folder1
 remote_data_dir: remote_folder1
 data_file: data.axgx
 video_file: video.mp4

another dataset:
 data_dir: folder2
 remote_data_dir: remote_folder2
 data_file: data.axgx
 video_file: video.mp4

Note

Portability is easy with neurotic! Use relative paths in your metadata
file along with a remotely accessible data store such as GIN [https://gin.g-node.org] to make your
metadata file fully portable. The example above is a simple model of this
style. A metadata file like this can be copied to a different computer, and
downloaded files will automatically be saved to the right place. Data
stores can be password protected and neurotic will prompt you for a
user name and password. This makes it easy to share the neurotic
experience with your colleagues! 🤪

URLs to Use with GIN

If you have data stored in a public repository on GIN [https://gin.g-node.org], you can access it
from a URL of this form:

https://gin.g-node.org/<username>/<reponame>/raw/master/<path>

For private repositories, you must use a different URL that takes advantage
of the WebDAV protocol:

https://gin.g-node.org/<username>/<reponame>/_dav/<path>

The second form works with public repos too, but GIN login credentials are
still required. Consequently, the first form is more convenient for public
repos.

Global Configuration Settings

The top-level name neurotic_config is reserved for configuration settings
that apply to all datasets or to the app itself. Presently, only one
configuration setting is implemented, but future versions of neurotic may
add more under this name.

	Key

	Description

	remote_data_root

	A URL prepended to each remote_data_dir that is not
already a full URL (i.e., does not already begin with a
protocol scheme like https://)

For example:

neurotic_config:
 remote_data_root: http://myserver

my favorite dataset:
 # dataset details here

Data Reader (Neo) Settings

The electrophysiology file specified by data_file is read using Neo [https://github.com/NeuralEnsemble/python-neo], which
supports many file types. A complete list of the implemented formats can be
found here: neo.io [https://neo.readthedocs.io/en/latest/io.html#module-neo.io].

By default, neurotic will use the file extension of data_file to guess
the file format and choose the appropriate Neo IO class for reading it. If the
guess fails, you can force neurotic to use a different class by specifying
the class name with the io_class parameter (all available classes are
listed here: neo.io [https://neo.readthedocs.io/en/latest/io.html#module-neo.io]).

Some Neo IO classes accept additional arguments beyond just a filename (see the
Neo docs for details: neo.io [https://neo.readthedocs.io/en/latest/io.html#module-neo.io]). You can specify these arguments in your
metadata using the io_args parameter.

For example, suppose you have data stored in a plain text file that is missing
a file extension. The neo.io.AsciiSignalIO [https://neo.readthedocs.io/en/latest/io.html#neo.io.AsciiSignalIO] class can read plain text
files, but you must specify this manually using io_class because the
extension is missing. You could do this and pass in supported arguments in the
following way:

my favorite dataset:
 data_file: plain_text_file_without_file_extension

 io_class: AsciiSignalIO

 io_args:
 skiprows: 1 # skip header
 delimiter: ' ' # space-delimited
 t_start: 5 # sec
 sampling_rate: 1000 # Hz
 units: mV

Video Synchronization Parameters

Constant Offset

If data acquisition began with some delay after video capture began, provide a
negative value for video_offset equal to the delay in seconds. If video
capture began after the start of data acquisition, use a positive value. A
value of zero will have no effect.

neurotic warns users about the risk of async if video_file is given but
video_offset is not. To eliminate this warning for videos that have no
delay, provide zero.

Frame Rate Correction

If the average frame rate reported by the video file is a little fast or slow,
you may notice your video and data going out of sync late in a long experiment.
You can provide the video_rate_correction parameter to fix this. The
reported average frame rate of the video file will be multiplied by this factor
to obtain a new frame rate used for playback. A value less than 1 will decrease
the frame rate and shift video events to later times. A value greater than 1
will increase the frame rate and shift video events to earlier times. A value
of 1 has no effect.

You can obtain a good estimate of what value to use by taking the amount of
time between two events in the video and dividing by the amount of time between
the same two events according to the data record (seen, for example, as
synchronization pulses or as movement artifacts).

Discrete Desynchronization Events

If you paused data acquisition during your experiment while video capture was
continuous, you can use the video_jumps parameter to correct for these
discrete desynchronization events, assuming you have some means of
reconstructing the timing. For each pause, provide an ordered pair of numbers
in seconds: The first is the time according to data acquisition (not
according to the video) when the pause occurred, and the second is the duration
of the pause during which the video kept rolling.

For example:

my favorite dataset:
 video_file: video.mp4
 # etc

 video_jumps:
 # a list of ordered pairs containing:
 # (1) time in seconds when paused occurred according to DAQ
 # (2) duration of pause in seconds
 - [60, 10]
 - [120, 10]
 - [240, 10]

These values could correct for three 10-second pauses occurring at times 1:00,
2:00, 3:00 according to the DAQ, which would correspond to times 1:00, 2:10,
3:20 according to the video. The extra video frames captured during the pauses
will be excised from playback so that the data and video remain synced.

neurotic will automatically suggest values for video_jumps if it reads
an AxoGraph file that contains stops and restarts (only if video_jumps is
not already specified).

Plot Parameters

Use the plots parameter to specify which signal channels from data_file
you want plotted and how to scale them.

Consider the following example, and notice the use of hyphens and indentation
for each channel.

my favorite dataset:
 data_file: data.axgx
 # etc

 plots:
 - channel: Extracellular
 ylabel: Buccal nerve 2 (BN2)
 units: uV
 ylim: [-150, 150]

 - channel: Intracellular
 ylabel: B3 neuron
 units: mV
 ylim: [-100, 50]

 - channel: Force
 units: mN
 ylim: [-10, 500]

This would plot the “Extracellular”, “Intracellular”, and “Force” channels from
the data_file in the given order. ylabel is used to relabel a channel
and is optional. The units and ylim parameters are used together to
scale each signal such that the given range fits neatly between the traces
above and below it. If units is not given, they are assumed to be
microvolts for voltage signals and millinewtons for force signals. If ylim
is not given, they default to [-120, 120] for voltages and [-10, 300]
for forces.

If plots is not provided, all channels are plotted using the default
ranges, except for channels that match these patterns: “Analog Input #*” and
“Clock”. Channels with these names can be plotted if given explicitly by
plots.

The amount of time initially visible can be specified in seconds with
t_width.

Epoch Encoder Parameters

The labels available to the epoch encoder must be specified ahead of time using
epoch_encoder_possible_labels (this is a current limitation of ephyviewer
that may eventually be improved upon).

For example:

my favorite dataset:
 epoch_encoder_file: epoch-encoder.csv
 # etc

 epoch_encoder_possible_labels:
 - label1
 - label2
 - label3

Filters

Highpass, lowpass, and bandpass filtering can be applied to signals using the
filters parameter. Note that filters are only applied if fast loading is
off (lazy=False).

Consider the following example, and notice the use of hyphens and indentation
for each filter.

my favorite dataset:
 data_file: data.axgx
 # etc

 filters: # used only if fast loading is off (lazy=False)

 - channel: Extracellular
 highpass: 300 # Hz
 lowpass: 500 # Hz

 - channel: Intracellular
 highpass: 300 # Hz

 - channel: Force
 lowpass: 50 # Hz

Filter cutoffs are given in hertz. Combining highpass and lowpass
provides bandpass filtering.

Amplitude Discriminators

Spikes with peaks that fall within amplitude windows given by
amplitude_discriminators can be automatically detected by neurotic on
the basis of amplitude alone. Note that amplitude discriminators are only
applied if fast loading is off (lazy=False).

Detected spikes are indicated on the signals with markers, and spike trains are
displayed in a raster plot. Optionally, a color may be specified for an
amplitude discriminator using a single letter color code (e.g., 'b' for
blue or 'k' for black) or a hexadecimal color code (e.g., '1b9e77').

In addition to restricting spike detection for a given unit to an amplitude
window, detection can also be limited in time to overlap with epochs with a
given label.

Consider the following example, and notice the use of hyphens and indentation
for each amplitude discriminator.

my favorite dataset:
 data_file: data.axgx
 # etc

 amplitude_discriminators: # used only if fast loading is off (lazy=False)

 - name: Unit 1
 channel: Extracellular
 units: uV
 amplitude: [50, 150]
 color: r

 - name: Unit 2
 channel: Extracellular
 units: uV
 amplitude: [20, 50]
 epoch: Unit 2 activity
 color: 'e6ab02'

Here two units are detected on the same channel with different amplitude
windows. Any peaks between 50 and 150 microvolts on the “Extracellular” channel
will be tagged as a spike belonging to “Unit 1”. The discriminator for “Unit 2”
provides the optional epoch parameter. This restricts detection of “Unit 2”
to spikes within the amplitude window that occur at the same time as epochs
labeled “Unit 2 activity”. These epochs can be created by the epoch encoder
(reload required to rerun spike detection at launch-time), specified in the
read-only annotations_file, or even be contained in the data_file if
the format supports epochs.

Amplitude windows are permitted to be negative.

tridesclous Spike Sorting Results

tridesclous [https://github.com/tridesclous/tridesclous] is a sophisticated spike sorting toolkit. The results of a sorting
process can be exported to a CSV file using tridesclous’s
DataIO.export_spikes [https://tridesclous.readthedocs.io/en/latest/api.html#tridesclous.dataio.DataIO.export_spikes]
function. This file contains two columns: the first is the sample index of a
spike, and the second is the ID for a cluster of spikes. If this file is
specified with tridesclous_file, then a mapping from the cluster IDs to
channels must be provided with tridesclous_channels.

In the following example, notice the lack of hyphens:

my favorite dataset:
 data_file: data.axgx
 tridesclous_file: spikes.csv
 # etc

 tridesclous_channels:
 0: [Channel A, Channel B]
 1: [Channel A]
 2: [Channel B]
 3: [Channel B]
 # etc

Here numeric cluster IDs are paired with a list of channels found in
data_file on which the spikes were detected.

To show only a subset of clusters or to merge clusters, add the
tridesclous_merge parameter.

In this example, note again the punctuation:

my favorite dataset:
 data_file: data.axgx
 tridesclous_file: spikes.csv
 # etc

 tridesclous_channels:
 0: [Channel A, Channel B]
 1: [Channel A]
 2: [Channel B]
 3: [Channel B]
 # etc

 tridesclous_merge:
 - [0, 1]
 - [3]

Now clusters 0 and 1 are combined into a single unit, and only that unit and
cluster 3 are plotted; cluster 2 has been discarded.

Firing Frequency Burst Detectors

If spike trains were generated using
Amplitude Discriminators, imported from
tridesclous Spike Sorting Results, or included in the data_file, a simple
burst detection algorithm that relies on firing rate thresholds can be run to
detect periods of intense activity. Note that burst detectors are only applied
if fast loading is off (lazy=False).

Detected bursts are plotted as epochs.

Burst detectors are specified in metadata like this:

my favorite dataset:
 data_file: data.axgx
 # etc

 amplitude_discriminators: # used only if fast loading is off (lazy=False)

 - name: Unit 1
 channel: Extracellular
 units: uV
 amplitude: [50, 150]

 burst_detectors: # used only if fast loading is off (lazy=False)

 - spiketrain: Unit 1
 name: Unit 1 burst # optional, used for customizing output epoch name
 thresholds: [10, 8] # Hz

The algorithm works by scanning through the spike train with a name matching
spiketrain (in this example, the spike train generated by the “Unit 1”
amplitude discriminator). When the instantaneous firing frequency (IFF) exceeds
the first threshold given (e.g., 10 Hz), a burst of activity is determined to
start. After this, at the first moment when the IFF drops below the second
threshold (e.g., 8 Hz), the burst is determined to end. After scanning through
the entire spike train, many bursts that meet these criteria may be identified.

Note that in general the end threshold should not exceed the start threshold;
this would essentially be the same as setting the start and end thresholds both
to the greater value.

Rectified Area Under the Curve (RAUC)

One way to simplify a high-frequency signal is by plotted a time series of the
rectified area under the curve (RAUC). Note that RAUCs are calculated
automatically only in the standalone application and only if fast loading is
off (lazy=False).

For each signal, the baseline (mean or median) is optionally subtracted off.
The signal is then rectified (absolute value) and divided into non-overlapping
bins of fixed duration. Finally, the integral is calculated within each bin.
The result is a new time series that represents the overall activity of the
original signal. RAUC time series are plotted separately from the original
signals in a second tab.

The choice of baseline is controlled by the rauc_baseline metadata
parameter, which may have the value None (default), 'mean', or
'median'. The size of the bins determines how smooth the RAUC time series
is and is set by rauc_bin_duration, given in seconds. The default bin
duration is 0.1 seconds.

A Complete Example

These are the contents of the example metadata file that ships with
neurotic, which can be loaded by running neurotic from the command line
without arguments:

example dataset:
 description: This is an example data set

 # these data are a subset of Jeffrey Gill's dataset 2018-06-21_IN-VIVO_JG-08 002
 data_dir: example-data
 remote_data_dir: https://gin.g-node.org/jpgill86/neurotic-data/raw/master/examples/example-data
 data_file: data.axgx
 video_file: video.mp4
 annotations_file: annotations.csv
 epoch_encoder_file: epoch-encoder.csv

 video_offset: 640.3 # seconds

 epoch_encoder_possible_labels:
 - force
 - B38 activity

 plots:
 - channel: I2
 units: uV
 ylim: [-30, 30]

 - channel: RN
 units: uV
 ylim: [-60, 60]

 - channel: BN2
 units: uV
 ylim: [-120, 120]

 - channel: BN3
 units: uV
 ylim: [-150, 150]

 - channel: Force
 units: mN
 ylim: [-10, 300]

 filters: # used only if fast loading is off (lazy=False)

 - channel: I2
 lowpass: 100 # Hz

 - channel: Force
 lowpass: 50 # Hz

 amplitude_discriminators: # used only if fast loading is off (lazy=False)

 - name: B3
 channel: BN2
 units: uV
 amplitude: [50, 150]
 color: '1b9e77'

 - name: B38
 channel: BN2
 units: uV
 amplitude: [17, 26]
 epoch: B38 activity
 color: '7570b3'

 - name: B4/B5
 channel: BN3
 units: uV
 amplitude: [85, 200]
 color: 'e6ab02'

 burst_detectors: # used only if fast loading is off (lazy=False)

 - spiketrain: B3
 thresholds: [8, 2] # Hz

 - spiketrain: B38
 thresholds: [8, 5] # Hz

 - spiketrain: B4/B5
 thresholds: [3, 3] # Hz

API Reference Guide

In addition to using neurotic as a standalone app, you can also leverage
its API in your own code.

The core of the API consists of two classes and one function:

	neurotic.datasets.metadata.MetadataSelector: Read metadata files, download datasets

	neurotic.datasets.data.load_dataset(): Read datasets, apply filters and spike detection

	neurotic.gui.config.EphyviewerConfigurator: Launch ephyviewer

All public package contents are automatically imported directly into the
neurotic namespace. This means that a class like
neurotic.datasets.metadata.MetadataSelector can be accessed more compactly
as neurotic.MetadataSelector.

Datasets

	neurotic.datasets.data

	neurotic.datasets.download

	neurotic.datasets.ftpauth

	neurotic.datasets.metadata

GUI

	neurotic.gui.config

	neurotic.gui.epochencoder

	neurotic.gui.notebook

	neurotic.gui.standalone

neurotic.datasets.data

The neurotic.datasets.data module implements a function for loading a
dataset from selected metadata.

	
neurotic.datasets.data.load_dataset(metadata, lazy=False, signal_group_mode='split-all', filter_events_from_epochs=False)

	Load a dataset.

metadata may be a MetadataSelector or a simple dictionary
containing the appropriate data.

The data_file in metadata is read into a Neo Block [https://neo.readthedocs.io/en/latest/api_reference.html#neo.core.Block] using an automatically detected neo.io [https://neo.readthedocs.io/en/latest/io.html#module-neo.io] class
if lazy=False or a neo.rawio [https://neo.readthedocs.io/en/latest/rawio.html#module-neo.rawio] class if lazy=True.

Epochs and events loaded from annotations_file and
epoch_encoder_file and spike trains loaded from tridesclous_file
are added to the Neo Block.

If lazy=False, filters given in metadata are applied to the
signals and amplitude discriminators are run to detect spikes.

neurotic.datasets.download

The neurotic.datasets.download module implements a general purpose
download function that handles connecting to remote servers, performing
authentication, and downloading files with progress reporting. The function
handles various errors and will automatically reprompt the user for login
credentials if a bad user name or password is given.

The module installs an urllib.request.HTTPBasicAuthHandler [https://docs.python.org/3/library/urllib.request.html#urllib.request.HTTPBasicAuthHandler] and a
neurotic.datasets.ftpauth.FTPBasicAuthHandler at import time.

	
neurotic.datasets.download.download(url, local_file, overwrite_existing=False, show_progress=True, bytes_per_chunk=8192)

	Download a file.

neurotic.datasets.ftpauth

The neurotic.datasets.ftpauth module implements a
urllib.request [https://docs.python.org/3/library/urllib.request.html#module-urllib.request]-compatible FTP handler that prompts for and remembers
passwords.

	
class neurotic.datasets.ftpauth.FTPBasicAuthHandler(password_mgr=None)

	This subclass of urllib.request.FTPHandler [https://docs.python.org/3/library/urllib.request.html#urllib.request.FTPHandler] implements basic
authentication management for FTP connections. Like
urllib.request.HTTPBasicAuthHandler [https://docs.python.org/3/library/urllib.request.html#urllib.request.HTTPBasicAuthHandler], this handler for FTP connections
has a password manager that it checks for login credentials before
connecting to a server.

This subclass also ensures that file size is included in the response
header, which can fail for some FTP servers if the original
FTPHandler [https://docs.python.org/3/library/urllib.request.html#urllib.request.FTPHandler] is used.

This handler can be installed globally in a Python session so that calls
to urllib.request.urlopen('ftp://...') [https://docs.python.org/3/library/urllib.request.html#urllib.request.urlopen]
will use it automatically:

>>> handler = FTPBasicAuthHandler()
>>> handler.add_password(None, uri, user, passwd) # realm must be None
>>> opener = urllib.request.build_opener(handler)
>>> urllib.request.install_opener(opener)

	
neurotic.datasets.ftpauth.setup_ftpauth()

	Install neurotic.datasets.ftpauth.FTPBasicAuthHandler as the
global default FTP handler.

Note that urllib.request.install_opener() [https://docs.python.org/3/library/urllib.request.html#urllib.request.install_opener] used here will remove all
other non-default handlers installed in a different opener, such as an
urllib.request.HTTPBasicAuthHandler [https://docs.python.org/3/library/urllib.request.html#urllib.request.HTTPBasicAuthHandler].

neurotic.datasets.metadata

The neurotic.datasets.metadata module implements a class for reading
metadata files.

	
class neurotic.datasets.metadata.MetadataSelector(file=None, local_data_root=None, remote_data_root=None, initial_selection=None)

	A class for managing metadata.

A metadata file can be specified at initialization, in which case it is
read immediately. The file contents are stored as a dictionary in
all_metadata.

>>> metadata = MetadataSelector(file='metadata.yml')
>>> print(metadata.all_metadata)

File contents can be reloaded after they have been changed, or after
changing file, using the load() method.

>>> metadata = MetadataSelector()
>>> metadata.file = 'metadata.yml'
>>> metadata.load()

A particular metadata set contained within the file can be selected at
initialization with initial_selection or later using the select()
method. After making a selection, the selected metadata set is accessible
at metadata.selected_metadata, e.g.

>>> metadata = MetadataSelector(file='metadata.yml')
>>> metadata.select('Data Set 5')
>>> print(metadata.selected_metadata['data_file'])

A compact indexing method is implemented that allows the selected metadata
set to be accessed directly, e.g.

>>> print(metadata['data_file'])

This allows the MetadataSelector to be passed to functions expecting a
simple dictionary corresponding to a single metadata set, and the selected
metadata set will be used automatically.

Files associated with the selected metadata set can be downloaded
individually or all together, e.g.

>>> metadata.download('video_file')

or

>>> metadata.download_all_data_files()

The absolute path to a local file or the full URL to a remote file
associated with the selected metadata set can be resolved with the
abs_path() and abs_url() methods, e.g.

>>> print(metadata.abs_path('data_file'))
>>> print(metadata.abs_url('data_file'))

	
abs_path(file)

	Convert the relative path of file to an absolute path using
data_dir.

	
abs_url(file)

	Convert the relative path of file to a full URL using
remote_data_dir.

	
all_metadata = None

	A dictionary containing the entire file contents, set by load().

	
download(file, **kwargs)

	Download a file associated with the selected metadata set.

See neurotic.datasets.download.download() for possible keyword
arguments.

	
download_all_data_files(**kwargs)

	Download all files associated with the selected metadata set.

See neurotic.datasets.download.download() for possible keyword
arguments.

	
load()

	Read the metadata file.

	
select(selection)

	Select a metadata set.

	
selected_metadata

	The access point for the selected metadata set.

neurotic.gui.config

The neurotic.gui.config module implements a class for configuring and
launching ephyviewer for a loaded dataset.

	
class neurotic.gui.config.EphyviewerConfigurator(metadata, blk, rauc_sigs=None, lazy=False)

	A class for launching ephyviewer for a dataset with configurable viewers.

At initialization, invalid viewers are automatically disabled (e.g., the
video viewer is disabled if video_file is not given in metadata).
Viewers can be hidden or shown before launch using the built-in methods.
Valid viewer names are:

	traces

	traces_rauc

	freqs

	spike_trains

	epochs

	epoch_encoder

	video

	event_list

	data_frame

launch_ephyviewer() is provided for starting a new Qt app and
launching the ephyviewer main window all at once.
create_ephyviewer_window() generates just the ephyviewer window
and should be used if there is already a Qt app running.

	
create_ephyviewer_window(theme='light', support_increased_line_width=False, show_datetime=False, datetime_format='%Y-%m-%d %H:%M:%S')

	Load data into each ephyviewer viewer and return the main window.

	
disable(name)

	Disable the viewer name.

	
enable(name)

	Enable the viewer name.

	
hide(name)

	Hide the viewer name.

	
hide_all()

	Hide all viewers.

	
is_enabled(name)

	Return whether the viewer name is enabled.

	
is_shown(name)

	Return whether the viewer name is shown.

	
launch_ephyviewer(theme='light', support_increased_line_width=False, show_datetime=False, datetime_format='%Y-%m-%d %H:%M:%S')

	Start a Qt app and create an ephyviewer window.

	
show(name)

	Show the viewer name.

	
show_all()

	Show all viewers.

neurotic.gui.epochencoder

The neurotic.gui.epochencoder module implements a subclass of
ephyviewer.datasource.epochs.WritableEpochSource.

	
class neurotic.gui.epochencoder.NeuroticWritableEpochSource(filename, possible_labels, color_labels=None, channel_name='', backup=True)

	A subclass of ephyviewer.datasource.epochs.WritableEpochSource for
custom CSV column formatting and automatic file backup.

neurotic.gui.notebook

The neurotic.gui.notebook module implements Jupyter notebook widget
counterparts for the MetadataSelector and the
EphyviewerConfigurator.

	
class neurotic.gui.notebook.MetadataSelectorWidget(file=None, local_data_root=None, remote_data_root=None, initial_selection=None)

	Interactive list box for Jupyter notebooks that allows the user to select
which metadata set they would like to work with.

>>> metadata = MetadataSelectorWidget(file='metadata.yml')
>>> display(metadata)

After clicking on an item in the list, the selected metadata set is
accessible at metadata.selected_metadata, e.g.

>>> metadata.selected_metadata['data_file']

A compact indexing method is implemented that allows the selected metadata
set to be accessed directly, e.g.

>>> metadata['data_file']

This allows the MetadataSelectorWidget to be passed to functions expecting a
simple dictionary corresponding to a single metadata set, and the selected
metadata set will be used automatically.

	
class neurotic.gui.notebook.EphyviewerConfiguratorWidget(metadata, blk, rauc_sigs=None, lazy=False)

	Interactive button grid for Jupyter notebooks that allows the user to
select which ephyviewer viewers they would like to display and then launch
ephyviewer.

	
disable(name)

	Disable the viewer name.

	
enable(name)

	Enable the viewer name.

	
hide(name)

	Hide the viewer name.

	
show(name)

	Show the viewer name.

neurotic.gui.standalone

The neurotic.gui.standalone module implements the main window of the
app.

	
class neurotic.gui.standalone.MainWindow(file=None, initial_selection=None, lazy=True, theme='light', support_increased_line_width=False, show_datetime=False)

	The main window of the app.

Release Notes

	neurotic 1.3.0

	neurotic 1.2.1

	neurotic 1.2.0

	neurotic 1.1.1

	neurotic 1.1.0

	neurotic 1.0.0

	neurotic 0.7.0

	neurotic 0.6.0

	neurotic 0.5.1

	neurotic 0.5.0

	neurotic 0.4.2

	neurotic 0.4.1

	neurotic 0.4.0

	neurotic 0.3.0

	neurotic 0.2.0

	neurotic 0.1.1

	neurotic 0.1.0

neurotic 1.3.0

2020-01-07

Improvements

	Add burst detection via firing rate thresholding
(#156 [https://github.com/jpgill86/neurotic/pull/156])

	Add button for auto-scaling signals to main window
(#150 [https://github.com/jpgill86/neurotic/pull/150])

	Add metadata color parameters for amplitude_discriminators
(#166 [https://github.com/jpgill86/neurotic/pull/166])

	Add metadata parameters rauc_baseline and rauc_bin_duration
(#151 [https://github.com/jpgill86/neurotic/pull/151])

	Make data_dir default to metadata file directory
(#163 [https://github.com/jpgill86/neurotic/pull/163])

Bug fixes

	Unmask FileNotFoundError when local data file is missing
(#154 [https://github.com/jpgill86/neurotic/pull/154])

Documentation

	Add Zenodo archive badge
(#162 [https://github.com/jpgill86/neurotic/pull/162])

neurotic 1.2.1

2019-12-09

Bug fixes

	Fix loading using Neo IOs lacking signals_group_mode (TypeError:
read_block() got an unexpected keyword argument 'signal_group_mode')
(#143 [https://github.com/jpgill86/neurotic/pull/143])

neurotic 1.2.0

2019-12-06

neurotic should now have broader compatibility with file types supported by
Neo’s neo.io [https://neo.readthedocs.io/en/latest/io.html#module-neo.io] classes thanks to two new metadata parameters: io_class
and io_args. See Data Reader (Neo) Settings for details.

neurotic is now available on conda-forge! See
Recommended Method for details on how to install.

Improvements

	Add metadata parameters io_class and io_args
(#137 [https://github.com/jpgill86/neurotic/pull/137])

Documentation

	Add conda-forge installation instructions
(#128 [https://github.com/jpgill86/neurotic/pull/128])

neurotic 1.1.1

2019-10-17

Changes

	Remove elephant as a dependency
(#120 [https://github.com/jpgill86/neurotic/pull/120])

neurotic 1.1.0

2019-10-09

Improvements

	Add API parameters and CLI argument for displaying the real-world date and
time (potentially inaccurate)
(#110 [https://github.com/jpgill86/neurotic/pull/110], #118 [https://github.com/jpgill86/neurotic/pull/118])

	Add printer-friendly theme (white background)
(#114 [https://github.com/jpgill86/neurotic/pull/114])

Documentation

	Add documentation of GIN URLs for public and private repos
(#113 [https://github.com/jpgill86/neurotic/pull/113])

neurotic 1.0.0

2019-07-27

🎊 First stable release! 🎉

Improvements

	Major API changes
(#104 [https://github.com/jpgill86/neurotic/pull/104], #100 [https://github.com/jpgill86/neurotic/pull/100], #106 [https://github.com/jpgill86/neurotic/pull/106])

	In preparation for this stable release, many formerly public classes and
functions were made private. This was done to minimize the number of
public classes/functions, which beginning with this release will be
treated as stable APIs that are ideally modified only in backwards
compatible ways. Users should trust that public classes and functions
will not be changed without good reason and a major version bump.

	Many improvements to the documentation, including the addition of an API
Reference Guide [https://neurotic.readthedocs.io/en/latest/api.html]

	Add example Jupyter notebook and command line argument for launching it
(#108 [https://github.com/jpgill86/neurotic/pull/108])

	Add file overwrite option to download functions
(#106 [https://github.com/jpgill86/neurotic/pull/106])

	Reserve the metadata keyword neurotic_config for global parameters
(#93 [https://github.com/jpgill86/neurotic/pull/93])

	The remote_data_root key must now be nested under
neurotic_config.

Bug fixes

	Fix crash when epoch encoder file contains labels not listed in metadata
(#97 [https://github.com/jpgill86/neurotic/pull/97])

	Allow amplitude discriminators to be specified with arbitrary units
(#99 [https://github.com/jpgill86/neurotic/pull/99])

neurotic 0.7.0

2019-07-21

Improvements

	New documentation hosted at Read the Docs: https://neurotic.readthedocs.io

	Add menu action for opening metadata in editor
(#83 [https://github.com/jpgill86/neurotic/pull/83])

	Add menu action for opening the selected data directory
(#84 [https://github.com/jpgill86/neurotic/pull/84])

	Add list of installed versions of dependencies and doc links to About window
(#44 [https://github.com/jpgill86/neurotic/pull/44], #65 [https://github.com/jpgill86/neurotic/pull/65])

Bug fixes

	Fix files remaining locked after closing a fast-loaded window
(#69 [https://github.com/jpgill86/neurotic/pull/69])

	Fix launching from command line with bad metadata argument
(#82 [https://github.com/jpgill86/neurotic/pull/82])

neurotic 0.6.0

2019-07-10

Improvements

	Add a basic “About neurotic” window with version and website information
(#38 [https://github.com/jpgill86/neurotic/pull/38])

	Update logo
(#39 [https://github.com/jpgill86/neurotic/pull/39])

	Add keywords and project URLs to package metadata
(#40 [https://github.com/jpgill86/neurotic/pull/40])

neurotic 0.5.1

2019-07-09

Compatibility updates

	Compatibility update for RawIOs with non-zero offset
(#37 [https://github.com/jpgill86/neurotic/pull/37])

neurotic 0.5.0

2019-07-06

Improvements

	Support fast (lazy) loading in Neo < 0.8.0
(#35 [https://github.com/jpgill86/neurotic/pull/35])

	Add “git.” and conditionally “.dirty” to dev local version identifier
(#34 [https://github.com/jpgill86/neurotic/pull/34])

neurotic 0.4.2

2019-07-06

Bug fixes

	Fix for EstimateVideoJumpTimes regression introduced in 0.4.0
(#33 [https://github.com/jpgill86/neurotic/pull/33])

neurotic 0.4.1

2019-07-02

Compatibility updates

	Change sources of development versions of dependencies
(#32 [https://github.com/jpgill86/neurotic/pull/32])

	Compatibility update for scaling of raw signals
(#31 [https://github.com/jpgill86/neurotic/pull/31])

neurotic 0.4.0

2019-07-01

Improvements

	Show epochs imported from CSV files with zero duration in epoch viewer
(#27 [https://github.com/jpgill86/neurotic/pull/27])

	Show epochs/events imported from data file in events list/epoch viewer
(#28 [https://github.com/jpgill86/neurotic/pull/28])

	Alphabetize epoch and event channels by name
(#29 [https://github.com/jpgill86/neurotic/pull/29])

neurotic 0.3.0

2019-06-29

Improvements

	Remove dependency on ipywidgets by making notebook widgets optional
(#25 [https://github.com/jpgill86/neurotic/pull/25])

	Notebook widget classes renamed:
MetadataSelector → MetadataSelectorWidget,
EphyviewerConfigurator → EphyviewerConfiguratorWidget

	Add app description and screenshot to README
(#22 [https://github.com/jpgill86/neurotic/pull/22])

	Promote to beta status
(#23 [https://github.com/jpgill86/neurotic/pull/23])

neurotic 0.2.0

2019-06-28

Improvements

	Add basic command line arguments
(#14 [https://github.com/jpgill86/neurotic/pull/14])

	Add continuous integration with Travis CI for automated testing
(#13 [https://github.com/jpgill86/neurotic/pull/13])

	Add some tests
(#15 [https://github.com/jpgill86/neurotic/pull/15],
#16 [https://github.com/jpgill86/neurotic/pull/16])

	Migrate example data to GIN
(#18 [https://github.com/jpgill86/neurotic/pull/18])

Bug fixes

	Fix crash when downloading from a server that does not report file size
(#17 [https://github.com/jpgill86/neurotic/pull/17])

	Raise an exception if a Neo RawIO cannot be found for the data file
(#12 [https://github.com/jpgill86/neurotic/pull/12])

neurotic 0.1.1

2019-06-22

Bug fixes

	Fix various downloader errors
(#7 [https://github.com/jpgill86/neurotic/pull/7])

neurotic 0.1.0

2019-06-22

	First release

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 neurotic	

 	
 	
 neurotic.datasets.data	

 	
 	
 neurotic.datasets.download	

 	
 	
 neurotic.datasets.ftpauth	

 	
 	
 neurotic.datasets.metadata	

 	
 	
 neurotic.gui.config	

 	
 	
 neurotic.gui.epochencoder	

 	
 	
 neurotic.gui.notebook	

 	
 	
 neurotic.gui.standalone	

Index

 A
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | S

A

 	
 	abs_path() (neurotic.datasets.metadata.MetadataSelector method)

 	
 	abs_url() (neurotic.datasets.metadata.MetadataSelector method)

 	all_metadata (neurotic.datasets.metadata.MetadataSelector attribute)

C

 	
 	create_ephyviewer_window() (neurotic.gui.config.EphyviewerConfigurator method)

D

 	
 	disable() (neurotic.gui.config.EphyviewerConfigurator method)

 	(neurotic.gui.notebook.EphyviewerConfiguratorWidget method)

 	
 	download() (in module neurotic.datasets.download)

 	(neurotic.datasets.metadata.MetadataSelector method)

 	download_all_data_files() (neurotic.datasets.metadata.MetadataSelector method)

E

 	
 	enable() (neurotic.gui.config.EphyviewerConfigurator method)

 	(neurotic.gui.notebook.EphyviewerConfiguratorWidget method)

 	
 	EphyviewerConfigurator (class in neurotic.gui.config)

 	EphyviewerConfiguratorWidget (class in neurotic.gui.notebook)

F

 	
 	FTPBasicAuthHandler (class in neurotic.datasets.ftpauth)

H

 	
 	hide() (neurotic.gui.config.EphyviewerConfigurator method)

 	(neurotic.gui.notebook.EphyviewerConfiguratorWidget method)

 	
 	hide_all() (neurotic.gui.config.EphyviewerConfigurator method)

I

 	
 	is_enabled() (neurotic.gui.config.EphyviewerConfigurator method)

 	
 	is_shown() (neurotic.gui.config.EphyviewerConfigurator method)

L

 	
 	launch_ephyviewer() (neurotic.gui.config.EphyviewerConfigurator method)

 	
 	load() (neurotic.datasets.metadata.MetadataSelector method)

 	load_dataset() (in module neurotic.datasets.data)

M

 	
 	MainWindow (class in neurotic.gui.standalone)

 	
 	MetadataSelector (class in neurotic.datasets.metadata)

 	MetadataSelectorWidget (class in neurotic.gui.notebook)

N

 	
 	neurotic.datasets.data (module)

 	neurotic.datasets.download (module)

 	neurotic.datasets.ftpauth (module)

 	neurotic.datasets.metadata (module)

 	
 	neurotic.gui.config (module)

 	neurotic.gui.epochencoder (module)

 	neurotic.gui.notebook (module)

 	neurotic.gui.standalone (module)

 	NeuroticWritableEpochSource (class in neurotic.gui.epochencoder)

S

 	
 	select() (neurotic.datasets.metadata.MetadataSelector method)

 	selected_metadata (neurotic.datasets.metadata.MetadataSelector attribute)

 	setup_ftpauth() (in module neurotic.datasets.ftpauth)

 	
 	show() (neurotic.gui.config.EphyviewerConfigurator method)

 	(neurotic.gui.notebook.EphyviewerConfiguratorWidget method)

 	show_all() (neurotic.gui.config.EphyviewerConfigurator method)

 _images/example-screenshot.png
& example dataset

[][] speed: [1 B[< Jhs <[> | mme [%] Time width (s): 10 B
& X video

4
2 e d L i

‘ s I [m Vil
S T s] i iy i

L
“

signals signals rauc

epoch encoder & x
25
force | I |
| ==]
N 650 652 654 656 658 661 662 668 676 682 688
¥ Hide controls.
Table operations A
‘ Options ‘ ‘ ‘Show/hide range start stop duration label
644143397 650503803 6360406 force
:
647643397 649597538 1954141 838 activity
= events 5 x
: 650616322 658971288 8354966 force
Motor patten -
Epoch inseton mode | g - 656193397 657.935232 1741835 838 activity
O Mutually excusve 0:640.984 Swallow ~
65905521 666903207 7.848087 force 1 648,044 Swallow
QemizT L 2:656681 Swallow
664043397 666353991 2310594 838 activity ey o .

events table

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 neurotic

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/example-screenshot.png
& example dataset

[][] speed: [1 B[< Jhs <[> | mme [%] Time width (s): 10 B
& X video

4
2 e d L i

‘ s I [m Vil
S T s] i iy i

L
“

signals signals rauc

epoch encoder & x
25
force | I |
| ==]
N 650 652 654 656 658 661 662 668 676 682 688
¥ Hide controls.
Table operations A
‘ Options ‘ ‘ ‘Show/hide range start stop duration label
644143397 650503803 6360406 force
:
647643397 649597538 1954141 838 activity
= events 5 x
: 650616322 658971288 8354966 force
Motor patten -
Epoch inseton mode | g - 656193397 657.935232 1741835 838 activity
O Mutually excusve 0:640.984 Swallow ~
65905521 666903207 7.848087 force 1 648,044 Swallow
QemizT L 2:656681 Swallow
664043397 666353991 2310594 838 activity ey o .

events table

_static/file.png

_static/down.png

_static/minus.png

_static/up-pressed.png

_static/plus.png

_static/up.png

